Design Science Revisited (Project #1!) EMSE-UVic Fall 2020 Margaret-Anne Storey Week 5, Oct 9/2020

Design Science Visual Abstract Template

Design Science - One View

Problem Solution

4 | Different kinds of contributions

Relevance: Characteristics of the context that are likely to impact applicability and potential value of the proposed solution

Rigor: Characteristics of the three knowledge creating activities (problem understanding, solution design and in context evaluation) that adds to the strength of the empirical support of the Technological Rule

Novelty: Positioning of the Technological Rule in terms of previous knowledge

Paper ID: Nistor2015

Relevance: Programming errors due to performance bugs. Relevant for programmers for which performance is an issue

Rigor: The validation pointed out that CARAMEL, used on 11 JAVA applications, and 4 C/C++ applications identified 61 performance bugs in the JAVA applications and 89 in C/C++ ones. Of these, 10+24 were not found before.

Novelty: (i) detect performance bugs whose fixes clearly offer more benefits than drawbacks to developers; (ii) identify a family of performance bugs; (iii) CARAMEL as tecnique for detecting performance bugs that have CondBreak fixes;

Paper Title: CARAMEL: Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes

Paper ID: Loncaric2018

Relevance: Data structure problems, especially in domains like user interfaces or web services where software must manage some internal state and also handle asynchronous events.

Rigor: Proof of concept demonstrated in four real cases

Novelty: It is a new technique for data structure synthesis that overcomes many of the limitations of previous work

Paper Title: Generalized Data Structure Synthesis

Paper ID: Avgerino2014

Rigor: Large-scale experiment on 33,248 programs from Debian Linux. MergePoint generated billions of SMT gueries, hundreds of millions of test cases, millions of crashes, and found 11,687 distinct bugs

Solution

Design

8

Novelty: Tested an order of magnitude more applications than have been tested by prior symbolic execution research. We analyzed each application for less than 15 minutes per experiment. We improve open source software by finding over 10,000 bugs and generating millions of test cases.

Paper Title: Enhancing Symbolic Execution with Veritesting

Paper ID: Tufano2015

Relevance: The study context is the change history of 200 projects belonging to three software ecosystems, namely Android, Apache, and Eclipse

Rigor: Validity is ensured because a large set of 200 projects concerning the analysis of code smells and oftheir evolution has been investigated. Projects were extracted from three ecosystems: android, apache and eclips.

Novelty: First comprehensive empirical investigation into when and why code smells are introduced in software projects.

Paper Title: When and Why Your Code Starts to Smell Bad

Paper ID: Floyd 2017

10 Meta

Novelty: Measure brain activity for carrying out different tasks

Paper Title: Decoding the representation of code in the brain: An fMRI study of code review and expertise

Who What How Framework (Preparation for Project #1!) EMSE-UVic Fall 2020 Margaret-Anne Storey Week 5, Oct 9/2020

Who What How Framework

Who: is the reported *beneficiary* of the research

Who? (is the main beneficiary) Researcher

14 | Software Engineering Design Space

What: type of research contribution

16 | Design Science Visual Abstract Template

17 | Different kinds of contributions

What: type of research contribution

Circumflex in the paper! (to avoid confusion listen up!)

156 McGrath

Circumflex in the paper! (to avoid confusion listen up!)

These axes were switched!

156 McGrath

Circumflex

Joseph. E. McGrath.

Methodology matters: Doing research in the behavioral and social sciences. 1972

22 | Socio-Technical Research Framework

Extending: Runkel & McGrath:

Research on Human Behavior: A Systematic Guide to Method, 1972

Triangulation: "The basic idea underpinning the concept of triangulation is that the phenomena under study can be understood best when approached with a variety or a combination of research methods. Triangulation is most commonly used in data collection and analysis techniques, but it also applies to sources of data. It can also be a rationale for multiple investigators in team research." http://methods.sagepub.com/reference/sage-encyc-gualitative-research-methods/n468.xml

24 | The Methods We Chose

Lebeuf, Voyloshnikova, Herzig & Storey: "Debugging, and Optimizing Distributed Software Builds: A Design Study", ICMSE 2018

25 The Methods We Chose

Gousios, Storey & Bacchelli, *"Work Practices and Challenges in Pull-Based Development: The Contributor's Perspective"*, ICSE 2016 **Sequential explanatory strategy:** e.g., quantitative analysis of trace data followed by qualitative analysis of interview data (latter helps explain the former)

Sequential exploratory strategy: e.g., analysis of qualitative data from surveys followed by analysis of quantitative trace data (for testing emerging theory, explain early exploratory findings)

Concurrent triangulation strategy: different methods used concurrently, improve validity

26 | Mixed method designs (see Creswell)

Technical Track Papers 2015 to 2017

27 | Categorizing ICSE Paper Research Methods

Williams et al., 2019

28 Categorizing ICSE Paper Research Methods

30 37 Data Papers Used Triangulation

31 | Contribution Type

Of these...

of 158

Data Only Papers

Authors Mention **Developers**

(But they don't study them!)

32 According to the Authors

What has changed since 2017 to 2020?