A Topics Course in
Empirical Software Engineering:
Bridging Research and Practice

Week 2, Sept 18th 2020
Instructor: Margaret-Anne (Peggy) Storey

Part 2: Beliefs and Evidence
in Software Engineering

“A paradigm is a shared world view that
represents the beliefs and values in a
discipline and that guides how problems
are solved.”

- Schwandt, 2001

Scientific method
Evidence-based reality
Theory verification and falsification

Quantitative over qualitative

\ Paradigms — Postpositivism

Creswell, 2014

Reality is subjective and experiential
Theory generation
Biases are expected and made explicit

Qualitative over quantitative

 Paradigms - Constructivism

Creswell, 2014

Change oriented
Collaborative
Shaped by political and social lenses

Qualitative and quantitative

\ Paradigms — Advocacy [Participatory

Creswell, 2014

Problem centered
Real-world practice oriented
Chooses methods as needed

\ Paradigms — Pragmatism

Creswell, 2014

Nature of science...

“Once this comparison took hold, no one bothered checking its validity or utility” [Gould]

Myth 1: Hypotheses --> theories --> laws

Myth 2: Scientific laws and ideas are
absolute

Myth 3: A hypothesis is an educated
guess (generalizing vs. explanatory
hypotheses)

Myth 4: A general and universal scientific
method exists (will discuss next week!)

Myth 6: Science and its methods provide
absolute proof

Myth 7: Science is procedural more than
creative (yeah induction!)

Myth 8: Science and its methods can
answer all question (for example?)

Myth 9: Scientists are particularly
objective

Myth 10: Experiments are the principal
route to scientific knowledge

Myth 11: Scientific conclusions are
reviewed for accuracy

Myth 13: Science models represent reality

Myth 14: Science and technology are
identical (enter Design Science)

The Principal Elements of the Nature of Science: Dispelling

by William F. McComas, 1998

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.3476&rep=rep1&type=pdf

Replication crisis in psychology (in software engineering?)

RELIABILITY TEST

http://www.youtube.com/watch?v=eZhqQ-MGln8

The Changelog — Episode #339

Why smart engineers write bad code

featuring Adam Barr

A
3 v,

Adim Adam Jerod

> PLAY L] DISCUSS ~) SUBSCRIBE ~ SHARE

Is this a law?

Law of Demeter

https://medium.com/@evan.hopkins.us/the-law-of-demeter-and-its-application-to-react-ab1e054{13c5
See also: https://productcoalition.com/ten-laws-of-software-development-cbd72db0f85¢c

https://medium.com/@evan.hopkins.us/the-law-of-demeter-and-its-application-to-react-ab1e054f13c5
https://productcoalition.com/ten-laws-of-software-development-cbd72db0f85c

Activity

Let’s replicate a study from a paper!

http://thomas-zimmermann.com/publications/files/devanbu-icse-2016.pdf

Mentimeter link...

(results posted separately online!)

http://thomas-zimmermann.com/publications/files/devanbu-icse-2016.pdf

Beliefs and Evidence in SE Activity

Go to menti.com

3756990

Sheet1

Fixing defects is riskier (more likely to cause future defects) than adding new features.

Code quality (defect occurrence) depends on which programming language is used.

Geographically distributed teams produce code whose quality is just as good as that of teams that aren't geographically d
When it comes to producing code with fewer defects, specific experience in the project matters more than overall progran
Stronger code ownership (fewer people owning a module or a file) leads to better code quality.

Merge commits are buggier than other commits.

Components with more unit tests have fewer customer-found defects.
More defects are found in more complex code.

Using assertions improves code quality.

Using static analysis improves code quality.

Coding standards help improve code quality.

Code review improves code quality.

Beliefs and Evidence in Software Engineering

Question Score Variance

Code quality (defect occurrence) depends on which programming language is used [46] 3.17 1.16

Fixing defects is riskier (more likely to cause future defects) than adding new features [34, 48] 2.63 1.08

Geographically distributed teams produce code whose quality (defect occurrence) is just as good as 2.86 1.07
teams that are not geographically distributed [29, 6]

When it comes to producing code with fewer defects specific experience in the project matters more 3.5 1.06

than overall general experience in programming [39]

Well commented code has fewer defects [52]

Code written in a language with static typing (e.g., C#) tends to have fewer bugs than code written in a
language with dynamic typing (e.g., Python) [46, 15]

Stronger code ownership (i.e, fewer people owning a module or file) leads to better software quality [7, 57, 15]

Merge commits are buggier than other commits.

Components with more unit tests have fewer customer-found defects [22].

More experienced programmers produce code with fewer defects. [34, 39]

More defects are found in more complex code. [25]

Factors affecting code quality (defect occurrence) vary from project to project. [59, 42]

Using asserts improves code quality (reduces defect occurrence) [4, 3]
The use of static analysis tools improves end user quality (fewer defects are found by users) [53, 58]
Coding standards help improve software quality [8]

Code reviews improve software quality (reduces defect occurrence) [38]

http://thomas-zimmermann.com/publications/files/devanbu-icse-2016.pdf

http://thomas-zimmermann.com/publications/files/devanbu-icse-2016.pdf

Beliefs and Evidence in Software Engineering

&)

S

W

N

—
'

@)
g =
<

=

©
h'd

O

O

=

©
=

)

Q
£

\
< o™ A N\
e QO) O”
QQ). \(\\O @@Q @Q &{O \}Q(\
R > N

Source of Opinion

