
A Topics Course in
Empirical Software Engineering:
Bridging Research and Practice

Your class will start soon!
Make sure you have Slack open!

A Topics Course in
Empirical Software Engineering:
Bridging Research and Practice

Week 1, Sept 11 2020
Instructor: Margaret-Anne (Peggy) Storey

University of Victoria

Let’s start with a quiz!

https://www.menti.com
(results are posted under
resources!)

https://www.menti.com

https://medium.com/@ChrisHerd/why-remote-work-is-eating-the-world-9b773436043a

Software is eating the world…. Marc Andreessen
https://a16z.com/2011/08/20/why-software-is-eating-the-world/

https://a16z.com/2011/08/20/why-software-is-eating-the-world/

(Competing) concerns in
software engineering…

Code: faster, cheaper, more features,
more reliable/secure

Developers: more productive, more
skilled, happier, better connected

Organizations/communities:
attract/retain contributors, encourage a
participatory culture, increase value

Some questions practitioners may care about….

What is a good architecture to solve problem x? [Devanbu]

What makes a really awesome programmer? [Software managers]

How to build a great development team? [Google]

How is program knowledge distributed? [Naur]

What is the ideal software engineering process?
[Facebook, Microsoft, IBM,…]

What tools/practices support a participatory development process? [Storey et al.]

https://www.flickr.com/photos/opensourceway/5755219017

Do the answers lie in here?

“Measuring programming
progress by lines of code is like

measuring aircraft building
progress by weight.”

Contributing graphs considered
harmful (Hanselman)

Developer Study

#1

41.8%
Distracting work

Environment

#2

36.6%
Meetings

#3

36.5%
Non-development

work

Context

Human / Social
Aspects

Technical
 Aspects

Socio-Technical
Aspects

Software Engineering Design Space

Human /
Social

Technical

Socio-Technical

Joint Optimization – Code Review

CodeFlow

CodeFlow: Improving the Code Review
Process at Microsoft, Czerwonka et al. 2018.

Research
success?

Dispelling myths in software engineering
(or creating new ones?)

Does increasing code coverage of testing reduce bugs?
No, wasting time testing simple code may increase the
presence of bugs! [Mockus et al.]

Test driven development reduces bugs, but increases time
delivering code [Nagappan et al.]

Geographical distance doesn’t matter much [Bird et al.]

Code clones do not reduce quality in code [Rahman et al.]

References for previous slide

A. Mockus, N. Nagappan, and T. Dinh-Trong, “Test coverage and post-verification
defects: A multiple case study,” in ESEM, 2009, pp. 291–301. (note see also this
reference for a more recent paper on this!
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4915&context=sis_research)

Nagappan, N., Maximilien, E.M., Bhat, T. et al. Realizing quality improvement through
test driven development: results and experiences of four industrial teams. Empir
Software Eng 13, 289–302.

C. Bird, N. Nagappan, P. Devanbu, H. Gall and B. Murphy, "Does distributed
development affect software quality?: an empirical case study of windows vista",
Communications of the ACM, vol. 52, no. 8, pp. 85-93, 2009.

M. S. Rahman and C. K. Roy, "On the Relationships Between Stability and
Bug-Proneness of Code Clones: An Empirical Study," 2017 IEEE 17th International
Working Conference on Source Code Analysis and Manipulation (SCAM), Shanghai,
2017, pp. 131-140.

https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4915&context=sis_research

Success practice transfer stories from
research

Automated testing (Facebook)

Code review tools (Microsoft)

Software Analytics (Hassan et al.)

….

Lack of industrial relevance (doesn’t scale or solve industry
problems) [Briand]

Poor replication of software engineering studies [Menzies et
al.]

Poor actionability (practitioners know which modules are
buggy…)

Perils of mining software repositories [Kaliamvakou, German
et al.]

Lack of focus on human/social aspects [Storey et al.]

“Academic software engineering research is a backwater with a
tenuous connection to practical software development”, Derek Jones

Empirical
Methods

 Software
 Engineering

Practice and Research

Some of the course objectives….

Appreciate that practitioners are researchers

Learn how to improve the reliability of and be
able to critique research in software engineering

Explore how to do research that is more
practically relevant

Objectives for today

Course structure (schedule, tools, participation,
assessment...)

Group Activity (Zoom Breakouts)

Mindmap/timeline of History of Software Engineering

(Video on History of Software Engineering)

Margaret-Anne (Peggy) Storey

- Professor of Computer at University of Victoria
- Canada Research Chair in Human Aspects of Software Engineering
- Director of the Matrix Institute, UVic (Applied Data Science)
- Professor of Aeronautics/Astronautics at MIT n 2000/2001
- Visiting Professor, Lund University (2016-2018)
- Consultant for Microsoft for the past few years
- Faculty Scientist with IBM for over 10 years
- Consulted/collaborated with small companies, organizations such as

the World Health Organization, DRDC Canada
- Research interests: developer productivity, development tools and

processes, research methods, collaboration
- Personal interests: Sailing, music, grew up in Ireland

Omar (your TA)

“I am a software engineering researcher who studies how automation, and the
practices built around it, impact software developers and their development
workflow. I investigate the socio-technical systems facilitated by automating
aspects of the software development process in an attempt to improve existing
automation-enabled workflows as well as explore new ones.

I am also a software developer experienced in several programming languages,
frameworks, and paradigms. I am also well-versed in continuous integration tools,
container-based development, and infrastructure configuration management. In
addition to my development experience, I have experience in the data science
field given the research I do, and I am also experienced with machine learning
models and development.

Course outline

Same for all students but deliverables/expectations
differ for graduates and undergraduates

Note: Class attendance/participation is required to
pass the course (see the other policies)

https://heat.csc.uvic.ca/coview/course/2020091/CSC5
78A

https://heat.csc.uvic.ca/coview/course/2020091/CSC578A
https://heat.csc.uvic.ca/coview/course/2020091/CSC578A

Course structure
Part 1: Fundamentals

Lectures, activities
Guest lectures/interviews
A lot of reading outside of class (to lay the groundwork for projects and
activities, may be more for graduate students)
Project 1

Part 2: Workshops: deeper dives

Some lectures, activities
More guests
Additional readings
Project 1/2

Tools we will use in this course

Zoom (will record but not post most of the lectures)

Github (schedule, links to materials, slides)

Slack (back channel during class, group discussions,
activities, 1-1 direct messaging)

Connex (for submitting some project deliverables,
grades, student list management, emergency emails)

Wordpress (will use later for workshop blogposts)

Other tools as needed!

Copyright
"All course content and materials are made available by
instructors for educational purposes and for the exclusive use
of students registered in their class. The material is protected
under copyright law, even if not marked with a ©. Any further
use or distribution of materials to others requires the written
permission of the instructor, except under fair dealing or
another exception in the Copyright Act. Violations may result
in disciplinary action under the Resolution of Non-Academic
Misconduct Allegations policy (AC1300). "

Class (zoom) etiquette

You have to be authenticated to enter Zoom

If you want to ask questions or make comments, use your
microphone (or raise your hand)

Encouraged to post comments in Slack

Arrive on time

You may not record the lectures (even for personal use)

Add your picture to GitHub, Slack and Zoom (camera use
encouraged!)

Avoiding Zoom Burnout!

Stand/stretch frequently

Breaks (remind me if I forget!)

Drink water

Try to change location in your room or apartment

Two Projects

First project will be an individual literature review (with
a twist) and a collaborative component

Second project will be the design (or critique/redesign)
of an empirical study (in teams)

Different requirements for undergraduate and graduate
students

Workshops: Deep dives on selected topics

Invited speakers (videos, podcasts…), Activities

Topics include:

Code assessment techniques

Knowledge sharing and collaboration

Developer productivity and remote work

Continuous software engineering (devops, security)

Diversity and inclusion in software engineering

Ethics and reliability of SE research

Next week! Introduction to Empirical Software
Engineering

Invited guest: Dr. Greg Wilson (please have some
questions ready, see GitHub for readings)

Preparing for class: See the readings/podcast in
GitHub

Next up today!

Break (stand, drink water, get some fresh air)

But first -- Breakout Rooms/groups activity!

Sketch a timeline/mindmap of the history of software
engineering using any tool you like

Watch the video by Grady Booch (see GitHub)

Submit via Slack (put names on your submissions!!!)

